Developmental regulation of neuronal KCa channels by TGFbeta 1: transcriptional and posttranscriptional effects mediated by Erk MAP kinase.
نویسندگان
چکیده
An avian ortholog of transforming growth factor beta1 (TGFbeta1) is the target-derived factor responsible for the developmental expression of large-conductance Ca(2+)-activated K(+) (K(Ca)) channels in chick ciliary ganglion (CG) neurons developing in vivo and in vitro. Application of TGFbeta1 evokes an acute stimulation of K(Ca) that can be observed immediately after cessation of a 12 hr exposure to this factor, that persists in the presence of protein synthesis inhibitors, and that is therefore mediated by posttranslational events. Here we show that a single 3 hr exposure to TGFbeta1 can also induce long-lasting stimulation of macroscopic K(Ca) that persists for at least 3.5 d after the end of the treatment. In contrast to the acute stimulation, this sustained effect is dependent on the transcription and synthesis of new proteins at approximately the time of TGFbeta1 treatment. However TGFbeta1 does not cause increases in the levels of slowpoke alpha subunit transcripts in CG neurons, suggesting that induction of some other protein or proteins is required for sustained enhancement of macroscopic K(Ca). In addition, application of TGFbeta1 evoked an almost immediate but transient phosphorylation of the mitogen-activated protein kinase Erk in CG neurons. TGFbeta1-evoked Erk activation was blocked by the specific MEK1 inhibitor 2- (2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one (PD98059). Moreover, application of PD98059 blocked both acute and sustained K(Ca) stimulation evoked by TGFbeta1. These results indicate that TGFbeta1 elicits a biphasic stimulation of K(Ca) via activation of an MEK1-Erk pathway and raise the possibility that other neuronal effects of TGFbeta superfamily members entail Erk activation.
منابع مشابه
Developmental Regulation of Neuronal KCa Channels by TGF 1: An Essential Role for PI3 Kinase Signaling and Membrane Insertion
Lhuillier, Loic, and Stuart E. Dryer. Developmental regulation of neuronal KCa channels by TGF 1: an essential role for PI3 kinase signaling and membrane insertion. J Neurophysiol 88: 954–964, 2002; 10.1152/jn.00976.2001. TGF 1 is a target-derived factor responsible for the developmental expression of large-conductance Ca -activated K (KCa) channels in ciliary neurons of the chick ciliary gangl...
متن کاملDevelopmental Regulation of Neuronal K+ Channels by Target-Derived TGFβ In Vivo and In Vitro
The functional expression of Ca2+-activated K+ channels (KCa) in developing chick ciliary ganglion (CG) neurons requires interactions with target tissues and preganglionic innervation. Here, we show that the stimulatory effects of target tissues are mediated by an isoform of TGFbeta. Exposure of cultured CG neurons to TGFbeta1, but not TGFbeta2 or TGFbeta3, caused robust stimulation of KCa. The...
متن کاملActivation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملDevelopmental regulation of neuronal K(Ca) channels by TGFbeta1: an essential role for PI3 kinase signaling and membrane insertion.
TGFbeta1 is a target-derived factor responsible for the developmental expression of large-conductance Ca(2+)-activated K(+) (K(Ca)) channels in ciliary neurons of the chick ciliary ganglion. The acute effects of TGFbeta1 on K(Ca) channels are mediated by posttranslational events and require activation of the MAP kinase Erk. Here we show that TGFbeta1 evokes robust phosphorylation of Akt/PKB, a ...
متن کاملProtein kinase signalling pathways involved in the up-regulation of the rat alpha1(I) collagen gene by transforming growth factor beta1 and bone morphogenetic protein 2 in osteoblastic cells.
Transforming growth factor beta (TGFbeta) family members are known for their important role in bone physiology. TGFbeta(1) and, to a smaller extent, bone morphogenetic protein 2 (BMP-2) have been reported to regulate the gene expression of different osteoblast markers in vitro. However, little is known about the molecular mechanisms involved in these actions. Here we report that BMP-2, like TGF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 15 شماره
صفحات -
تاریخ انتشار 2000